If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2=-9x
We move all terms to the left:
18x^2-(-9x)=0
We get rid of parentheses
18x^2+9x=0
a = 18; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·18·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*18}=\frac{-18}{36} =-1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*18}=\frac{0}{36} =0 $
| -16-7m=-2(6m-7 | | 8(k-4)=80 | | 314x=972 | | 100=x+x+2x | | 4/x-1-2/x+1-1/6=x5/x²-1 | | 100=×+×+2x | | u2=28 | | |2x+7|-3=8 | | -9x-81=2x-15 | | 80=4x+3x+x | | 28x+24=-24x-8 | | 9+2h=17 | | 8x-37=3x-27 | | 2w-6=-2w+34 | | (2a+1)(6a−2)=3a(4a−1)+4 | | Y=0.1x-6;(-7,7) | | n/25.8=5.4/9 | | (2a+1)·(6a−2)=3a·(4a−1)+4 | | x-6/8=−2 | | 8^x=32^5 | | 20=2(p-3) | | -2x=x-7-8 | | 4k=14-3k | | 17−p=15 | | 5+x=3450 | | 2(d+3)=18 | | X+1/5x=72 | | 5.3g+5=2.3g+20 | | -7v-35=-9v+17 | | 5x1/9=5/18 | | -7+3n=-4 | | -5x+15=95 |